
Transparent, Messaging-Free Management Model For
Programmable, Intelligent Network Elements

Optimum Communications Services,
Inc.

info@ocsipholding.com

ABSTRACT
This paper presents a direct network element (NE)
configuration and status file transfer routine based model
for managing programmable NEs, avoiding complexity and
restrictions of intermediate messaging and transaction
protocols of conventional network management systems
(NMS). The routine of transferring binary network
management data files between NMS and NEs enables
logical decoupling of the NMS server side and the NE side
network management actions, allowing the NMS server
software applications, the NE programmable hardware
functionality and the NMS communications network to be
implemented without dependencies from each others, as
well as flexibly changing any of these elements without
impacting others. The presented generic NMS architecture
thus is well suited for managing programmable NEs of
arbitrary functionalities. Moreover, programmable
hardware enables cost-effective implementation of NEs that
can be designed to be fully self-operating at any given
application (due to not having to be over-functionalized for
a variety of applications, as in the case of hardwired logic),
thus allowing dynamic network operation under static
management configuration. Accordingly, a highly reliable,
scalable and flexible network and management system
architecture is produced with a core NMS routine that
operates effectively without a need for exception handling.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: C.2.3 [Network
Operations]: Network management.

General Terms
Design, Economics, Management, Performance, Reliability,
Security, Standardization.

Keywords
Automated, transparent NMS, autonomous NEs.

1. INTRODUCTION
Traditional NMS (e.g. SNMP, TL1, CMIP) rely on
messaging for transactions and communications between
system elements. Conventional NMS transactions are
normally event-triggered and can occur unpredictably, e.g.
based on dynamic network events. For instance, network
defect activations and deactivations cause NMS messages.

Likewise, even basic NMS operations, such as accessing a
NE status or control parameter conventionally involve
messaging and command transactions, requiring protocol,
message, language or data format conversions. Such
traditional NMS have inherent problems:
 Performance degrades when NMS capabilities are most

needed i.e. during bursts of messaging triggering
events such as network failures.

 Components are often technology or implementation
dependent, complicating system integration via
requiring various stages of middleware, resulting in lost
NMS transparency and reduced flexibility.

 Transactions are protocol, language or format specific,
requiring protocol conversion agents etc., further
complicating NMS implementations and reducing
transparency and flexibility.

 Since NMS operations are based on predefined,
technology-specific fixed set of commands or methods,
functionality supportable through conventional NMS is
restricted to a subset supported by each component.

Thus, even with their exhaustive implementational
complexity, conventional NMS techniques are usually
inefficient and restrictive in operation. To address these
challenges, a streamlined NMS and programmable, self-
operating NE architecture is presented, providing
transparent and flexible network management with
architecturally improved scalability, reliability and
performance independent of system load.

2. TRANSPARENT NMS MODEL
2.1 Streamlined NMS for Programmable
NEs
Programmability of NEs, i.e., the shift from discrete
functionality NEs to non-discrete or even dynamic
functionality NE, is commonly assumed to complicate the
network management. However, this paper presents a
model for actually simplifying NMS as well as NE software
(SW), enabled in part by programmable NE hardware
(HW).

Key differentiating attributes of such NMS architecture
optimized for programmable, intelligent (i.e. autonomous)
NEs include:
 Arbitrary variety of programmable NE functionalities

and management thereof supported through generic
NMS and NE SW;

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 1 of 6

http://www.ocsipholding.com/
mailto:info@ocsipholding.com

 Dynamic network operation realized under static
network management configuration;

 Simple, reliable, scalable and transparent NMS-NE file
transfer routine based operation, with user (or client
application) interface side as well as NE side actions
occurring as automatic consequences of the contents of
binary files transferred between NMS server and NEs,
without a need for the NMS or NE SW to interpret
contents of such files.

Fig. 1 below illustrates the presented NMS model,
providing logical separation between independently
occurring functional routines of 1) network management
data (NMD) file transfer between NMS file server and the
programmable NEs; 2) NE-side actions performed
autonomously by (programmable HW of) the target NEs
based on contents of the binary NMD files copied from
NMS server; and 3) NMS-side actions occurring
automatically based on contents of NMD files copied from
the NEs.

NE(s)NMS
server 1)File transfer routine

NMS
side-effects

3)NMS-side actions based on
binary contents of files
copied from NEs

NE
side-effects

2)NE-side actions performed by
NE (programmable HW) based

on binary contents of files
copied from NMS

Functional
de-coupling

Functional
de-coupling

Functional
de-coupling

Functional
de-coupling

Figure 1. File transfer routine based NMS model.

Uniquely, compared to conventional messaging based NMS
technologies, with the transparent NMS model illustrated in
Fig. 1, the intended network management actions associated
with the NMD files transferred from NMS server to the
NEs occur as direct consequences of the NEs storing these
files at their local memories, with such NE-side actions
carried out automatically by the NE programmable HW,
without a need for either the NMS or NE SW to process the
contents of the NMD files. Likewise, the NMS GUI
automatically displays current network status based on the
NMD files transferred from the NEs to NMS file server,
and performs any user notification of reportable network
events as a direct consequence of values of pre-defined bit
locations (e.g. NE alarm status bits) in the NMD files, again
without a need for the NE SW to process contents of any
NE status files, or for any event-based messaging or other
exception case handling by the NE or NMS SW.

Accordingly, the transparent binary file transfer routine
based NMS model per Fig. 1 allows unrestricted network
management operations based on simple, repeating transfer
of NMD files between NMS server(s) and programmable
NEs. The presented transparent, messaging-free NMS
model involves concepts initially published in [1].

2.2 Architecture Overview
Fig. 2 below illustrates the presented direct binary file
transfer routine based NMS communications architecture.

internet

GUI

PC NMS server

NE (a) . . .NE (b) NE (c) NE (z)

HTTPS

Copying configuration
files from NMS

server to NE

. . .

Copying status
files from NE to
NMS server

Figure 2. File transfer routine based transparent NMS
architecture for programmable NEs.

Fig. 2 presents an overview of functional architecture of the
presented network management process. At high-level, the
NMS, via a set of automatic routines, transfers binary
network management data (NMD) files between an NMS
file server and a set of programmable NEs, while network
management actions occur as automatic consequences of
the contents of the NMD files.

The NMS process of Fig. 2 is based on the following
mutually asynchronous and conceptually decoupled sub-
processes (see also Fig. 1):

1) A set of automatic file transfer routines transfers
NMD files between the NMS server and the NEs;

2) The NEs perform on their end the appropriate
NMS actions associated with the NMD files;

3) The NMS GUI and any application software act on
the NMD files at the NMS server, to perform the NMS
transactions on its end.

The sub-process 1) is based on a secure Network File
System (NFS), with the NMS server providing NFS server
and the NEs NFS client functionalities. This sub-process
further comprises the below two independent NMD file
transfer routines that the NEs repeat periodically, e.g. every
1 or 10 seconds:

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 2 of 6

http://www.ocsipholding.com/

a) The NFS clients of the NEs look for and copy their
associated NMD program and control files, referred to
as NE configuration files, from NE-specific
configuration file directories at the NFS server, over a
network to their local memories.

b) In addition, the NFS clients at the NEs copy contents
of their status register segments within their local
memories via a type of NMD file referred to as NE
status file over a network to their associated NE status
directories at the NMS server.

The NMS communications network between the NMS file
server and the NEs can be for instance the Internet.

The sub-process 2) is performed by the NE HW, e.g. per
[2], automatically based on the binary contents of the NE
control files, normally without further involvement by
either NMS or NE SW. An exception to that is a case when
an NE control file contents contain such a value in a
particular NE control register, referred to as the reboot
control register, that is intended to cause the NE SW to
reboot, in which case the NE SW will do a reboot of the
type indicated by the reboot control register value. Aside
this reboot exception, the NE HW automatically, without
SW involvement, completes the network management
actions indicated by the contents of new NE control files
copied to the control register segment in its local memory
space. The NE also copies to its program memory segment
within its local memory space any new program files from
its associated directory at the NMS file server designated
for program files for that destination NE. The program
memory segment of an NE comprises multiple directories to
allow storing multiple NE program files, and the value of
the NE reboot control register indicates both whether the
NE is to reboot, and the directory (in the program memory
segment of the NE) for the program files with which to
reboot. In addition, the NE HW automatically maintains
and updates a set of NE status parameters in its status
register memory space, and the NE SW reads the contents
of this status register segment in the NE memory space to a
NE status file that the NE copies to an appropriate directory
at the NMS server designated for status files from that
source NE. The NE copies also the contents of its control
registers via its NE status file back to the NMS server,
allowing the user to verify the actual values of also the NE
control registers via GUI. Hence, the phrase NE status file
herein refers to the contents of both the NE control and
status registers, collectively referred to as NE device
registers.

The sub-process 3) is performed by the NMS GUI SW via
providing access in a human understood format for the
system user to the NMD files at the NE-specific directories
at the NMS file server. This sub-process involves read
access to the status register values within the NE status

files, write and read access to control register values within
the NE control files, and producing NE program files to
appropriate folders at the file server. Moreover, the NMS
GUI displays notifications of significant events in the
network such as NE alarm activations according to
principles per [2] and [3].

It is seen from the above discussion that the three main sub-
processes of the NMS process are mutually decoupled,
other than through the contents of the NMD files
(transferred between NMS server and NEs) that indicate the
intended actions to be performed at the other end of the
system to complete any given network management
operation.

Compared against conventional messaging and command
based NMS techniques, this decoupling between the
functional elements of the network management system
yields several architectural benefits, including:

 Reliability and scalability: High load of NMS or
network event activity on one element of the system
does not negatively interfere with other elements. For
instance, while e.g. the NMS server is heavily loaded
during for instance a network service contract testing
period when the NE control parameters are changed
rapidly for test case purposes, the file transfer routine,
the SW of the NEs, and even the HW of those NEs not
under the test, are not at all impacted. Likewise, a
heavy load of e.g. network defect activations and de-
activations at a given NE does not impact the NMD file
transfer routines, the other NEs, the NMS server or
GUI SW; instead, e.g. per [2] and [3], just a single NE
alarm notification is generated at the NMS GUI when a
previously defect-free NE enters a defected state. (Note
that ‘NE’ here can refer also to e.g. group of nodes,
sub-networks, contract network groups etc.
hierarchically.) As a consequence, such NMS is highly
reliable and scalable, providing predictable, steady
performance under any load of NMS and network
event activities.

 Transparency: The architecture (per Fig:s 1 and 2)
provides transparent NMS communications all the way
from the NMS GUI to the NE HW device registers and
back, without intermediate messaging protocol
conversion or command translation agents etc. non-
transparent middleware common with traditional NMS
communications techniques. Accordingly, this NMS
model inherently enables a more intuitive and flexible
network management, by allowing direct access to the
NE parameters of interest via an intuitive and
transparent GUI, without requiring the network
operator’s personnel to know about or deal with the
details of any intervening messaging protocols,
command language syntaxes etc. such technicalities.

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 3 of 6

http://www.ocsipholding.com/

 Versatility and extensibility with simple core
functionality: The NMS is flexible regarding any
changes needed to the implementation of either the NE,
NMS server, GUI etc. elements of it, as well as any
changes to the network through which the NMS and
NEs transfer files, or to the way the GUI and the NMS
file server communicate. Consequently, any of these
system elements can change without the need to
redesign the rest of the NMS system.

The full NMS further comprises PC(s) or terminals hosting
the NMS GUI application, e.g. HTML based web browser.
In such a system implementation, the GUI connects to the
NMS server over a secure HTTP connection. Regarding
Fig. 2, note that there is no implied limit to the number of
NEs supported by this network alarm monitoring system,
but that instead this system architecture supports an
arbitrary number of NEs, and that there can equally well be
multiple physical NMS server and user computers as well
as multiple concurrent NMS GUI applications.

2.3 NMS Server Information Architecture
Fig. 3 is a diagram of a logical directory structure at the
NMS file server, in the context of Fig. 2.

NE(b)-specific directory

Control

Program

Status . . .

NMS Server

\

NE(a)-specific directory

NMS file server director structure

NE(z)-specific directory

Figure 3. NMS server information architecture for the
transparent, file transfer based NMS model.

Fig. 3 illustrates a logical directory structure at the NMS
file server for storing NMD files for a set of NEs managed
through the NMS. Below the file server directory root, there
is a directory structure holding a set of NE-specific
directories. Each of the directories stores NMD files for its
associated NE. Each directory comprises subdirectories for
holding program, control and status files, respectively, of
the NE associated with the directory.

Operation of the NMS file server in a process of
configuring and monitoring a given NE is based on the
below principles:

1) A system user, e.g., a network operator staff
member, and/or client application software produces
desired types of NE program and control files for a NE,
using the NMS GUI client and related server SW, into the
program and control file directories associated with the NE
at the NMS file server.

2) The NE, via a repeating routine, for instance every
ten seconds, looks for and copies these files from its
associated directories at the NMS server to their
appropriate locations within the local memory space of the
NE. The NE will consequently autonomously complete on
its end the NMS operations indicated via each new NE
configuration file.

3) The NE, also via a repeating routine performed
e.g. once every second, copies the contents of its device
status registers via its NE status file to the status folder at its
directory at the NMS server. The NMS SW will
consequently display NE status data, along with a new NE
alarm notification as necessary, to the user via the GUI,
based on the contents of the latest NE status file at its
associated directory at the NMS server, for instance
utilizing the network alarm monitoring principles per [2]
and [3].

The management process for a group of NEs is based on
simply repeating, or executing in parallel, the management
process of a single NE described above. Copying of files
between directories at the NMS server and the NEs is based
on secure NFS, e.g. NFS version 4. Also, each NE HW unit
is identified by its unique NE ID number configured at the
factory on a non-volatile memory, e.g. flash drive, for each
NE unit, and the names of the NE-specific directories at the
file server include the NE ID of their related NEs, based on
which each NE knows to access its appropriate directory at
the NMS server.

The need for identifiers for source, destination, message or
transaction is avoided for NMS communications between
the NMS server and the NEs, in part via the use of NE-
specific directories at the NMS file server for storing the
NMD files associated with each one of the NEs. Note that
transaction, source, destination etc. identifiers are usually
necessary with customary NMS communications schemes,
per the common messaging protocols (e.g. SNMP, CMIP,
TL1 etc.), requiring related NMS messaging protocol
processing to be performed by conventional NMS and NE
devices, thus making the traditional network management
systems implementation, operation and administration more
complicated and less flexible compared to the plain binary
NMD file transfer based NMS communication presented
herein.

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 4 of 6

http://www.ocsipholding.com/

Besides its more straightforward and transparent
implementation and more flexible and intuitive operation,
benefits of the presented NMS model enabled via the NE-
specific NMD file folders include elimination of NMS
communications overhead that is needed with conventional
NMS messaging protocols, and the clarity and intuitiveness
of the NMS file server structure based on a repeated set of
similar NE-specific directories for the set of NMD files per
each NE.

2.4 NE Information Architecture
Fig. 4 is a diagram of a logical structure of a local memory
space of an NE (in the context of Fig. 2).

Programmable Network Element

\

NE directory structure

NE
status

memory
segment

NE
control

memory
segment

NE
program
memory
segment

Figure 4. Information architecture of a programmable
NE managed through the transparent NMS model.

Fig. 4 illustrates a logical structure of the local memory
space of each NE of the network management system per
Fig. 2. The embedded memory space of the NE comprises a
program memory segment, a control register segment and a
status register segment. NEs can have various other
memory segments, e.g. RAM, in addition to the three
segments shown in Fig. 4, and there can be as many layers
of hierarchy of NE logical directory structure below its root
as desired, as well as the shown memory segments can have
sub-directories. Reference specifications for the embedded
system architecture of an example of an autonomous,
programmable NE, including NE device register
descriptions with related application notes, are provided in
[2].

The NE memory space is organized as a logical directory
structure, with the NE program memory segment forming a
logical subdirectory at the NE for holding the NE program
files, and the NE control register segment and the NE status
register segment each forming binary files under the NE
logical directory structure. The NE may comprise a HW
unit with an embedded microprocessor and a set of
embedded memories organized from the NE SW
perspective as a continuous directory structure.

In an example NE per [2], the NE program memory
directory is a flash drive, and the NE control and status files
are predefined address ranges within the embedded memory
space of the NE microprocessor containing the NE device
control and status registers, respectively. Furthermore, the
NE device registers are implemented within a
programmable logic device that is configured, at least in
part, via the NE program files stored at the directory. The
programmable hardware logic of such autonomous NEs
completes on the NE side the network management
operations indicated via each new NE control file, as well
as produces and keeps updated a predefined set of NE
status parameters on the NE status file. Such NEs are
capable of operating autonomously and dynamically, even
with NE program and control files that are static for a
duration of a network service contract that a given set of
NEs are deployed for.

The HW of a programmable NE implementation comprises,
besides the embedded microprocessor and its memories, a
programmable logic device (PLD, or FPGA i.e. Field
Programmable Gate Array) within which, both the
microprocessor as well as the HW logic, including the NE
device registers, can be included. With such re-
programmable NE HW, the NE program files in the flash
drive comprise both a binary file for configuring the
programmable HW logic of the NE (its PLD/FPGA), as
well as a binary executable program for the NE
microprocessor.

The NE SW executes periodically, e.g. once every ten
seconds, a repeating routine comprising the below steps:

1) The NFS client of the NE looks for and copies to
its local memory segments new NE program and control
files from its associated directories at the NFS server of the
NMS server computer;

2) The NE HW automatically completes the NMS
actions indicated via new NE control files;

3) The NE NFS client copies its status file to its
associated directory at the NFS server.

While the step 2) generally is performed by the NE HW,
the NE SW however checks the value of a particular
address in the control register segment referred to as the
reboot control register after it has copied a new NE control
file from the NMS server. In case that the reboot control
register was set to a value indicating NE reboot action, the
NE SW will perform the type of NE reboot specified by the
value of the reboot control register. However, as a general
rule, i.e., in cases that the reboot control register was not set
in its active value, the NE HW will complete all the
network management operations indicated by each new NE
control file automatically without any SW involvement.

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 5 of 6

http://www.ocsipholding.com/

Benefits of this NE functional architecture include that the
NE SW does not need to process the NE control or status
files or to perform related consecutive actions (other than
checking the reboot command register in the NE control
files and rebooting the NE as necessary). Consequently, the
processing load for the NE SW is significantly reduced
through elimination of intermediary processing stages of
conventional NMS communications, while the entire system
operation is made faster, transparent and more predictable
and reliable via programmable HW based automation.

2.5 Autonomous, Programmable NEs
It is finally noted that the remote re-programmability of NE
HW logic functionality, enabled by PLD technology and the
NMS concepts such as the ones discussed herein, enables
cost-efficiently designing and implementing highly
intelligent NE HW capable of dynamic operation without a
need for any SW involvement after initial configuration for
a given application.

The high level of intelligence in such fully-programmable
NE HW is made economical due to that, unlike with non-
programmable HW where the hardware logic typically
needs to be designed for a variety of different potential
applications and operating modes, with NE HW whose
logic can be reprogrammed for a variety of operating
applications, it is expedient to use a generic physical HW
design with a PLD (such as high capacity FPGA) as the
differentiating component, to be programmed with single-
application logic loads.

That way, any individual logic design can often actually
become less complex, while achieving higher level of
system intelligence and performance with plain hardware
logic operation than what would conventionally be
realizable with combinations of HW and various layers of
SW. Furthermore, such fully HW-logic automated, self-
operating NEs can achieve truly realtime dynamic
operation, synchronously even over wide area network
distances among a number of independently timed nodes,
and even down to individual network data plane bit timeslot
granularity.

Reference system specifications for such autonomous,
programmable NEs, for example applications of transport
network throughput maximization based on realtime data
load variations between a number of routing nodes, and
routing, switching and forwarding table free packet delivery
network model, are provided in [4] and [5], and [6] and [7],
respectively.

3. CONCLUSIONS
The presented NMS model provides direct, binary file
transfer based network management communication that
avoids the complexity and restrictions of intermediate
messaging protocols or transaction languages and
conversions thereof. Since the entire NMS operation is
based on a repeating file transfer routine without exception
cases, any dynamics of NMS application software, NE
hardware and NMS communications are effectively
decoupled from each others. Thus, unlike with
conventional, event-triggered NMS, the presented NMS is
inherently highly reliable, such that its performance does
not degrade during periods of high load of network event
activity. This NMS functional architecture is particularly
effective with programmable, intelligent NE HW capable of
autonomous operation without SW involvement i.e. under
static NMS configuration. Such messaging-free NMS
communications architecture provides transparent, file
transfer routine based highly automated, scalable and
reliable operation, with both NMS server as well as NE side
actions occurring as direct consequences of the contents of
the binary files transferred between NMS and NEs, without
any intermediate processing, data format conversions etc.
As a result, the presented NMS model, based on generic
NMS and NE SW acting as transparent binary file
management and transfer agents, enable managing
programmable NEs with unlimited range of functionalities.

4. REFERENCES
[1] Sandstrom, M. 2006. U.S. Patent Application
#11/566,178. Direct Binary File Transfer Based Network
Management System Free of Messaging, Commands and Data
Format Conversions.
[2] Sandstrom, M. 2006. U.S. Provisional Patent
Application #60/866,208. Intelligent, Self-Operating Network
Element.
[3] Sandstrom, M. 2006. U.S. Patent Application
#11/563,079. Intelligent Network Alarm Status Monitoring.
[4] Sandstrom, M. 2002. U.S. Patent #7,333,511.
Dynamically Channelizable Packet Transport Network.
[5] Sandstrom, M. 2009. U.S. Patent Application
#12/363,667. Network Data Transport Multiplexer Bus With
Global And Local Optimization Of Capacity Allocation.
[6] Sandstrom, M. 2002. US Patent #7,254,138.
Transparent, Look-up-free Packet Forwarding Method for
Optimizing Global Network Throughput Based on Real-time
Route Status.
[7] Sandstrom, M. 2009. U.S. Patent Application
#12/390,387. Packet-Layer Transparent Packet-Switching
Network

© Optimum Communications Services, Inc.
www.ocsipholding.com

Page 6 of 6

http://www.ocsipholding.com/

	1. INTRODUCTION
	2. TRANSPARENT NMS MODEL
	2.1 Streamlined NMS for Programmable NEs
	2.2 Architecture Overview
	2.3 NMS Server Information Architecture
	2.4 NE Information Architecture
	2.5 Autonomous, Programmable NEs

	3. CONCLUSIONS
	4. REFERENCES

